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In this paper we propose task swapping networks for task reassignments by using task swap-
pings in distributed systems. Some classes of task reassignments are achieved by using iterative
local task swappings between software agents in distributed systems. We use group-theoretic
methods to find a minimum-length sequence of adjacent task swappings needed from a source
task assignment to a target task assignment in a task swapping network of several well-known
topologies.
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1. Introduction

A distributed system is defined as a collection of independent computers or pro-
cessors that are connected by an arbitrary interconnection network [45, 52]. The
objective of a task assignment [45, 48] in a distributed system is to find an optimal
or suboptimal assignment of tasks to processors (or agents), while satisfying tem-
poral and spatial constraints imposed on the system. A task assignment is either
preemptive or non-preemptive [41]. If a task assignment is preemptive, a task re-
assignment is allowed in such a way that tasks are transferred between processors
(or agents) during their execution for improving the system performance [41, 46].
Recent advances in software agent technology [30, 32, 43] in distributed systems
allow software entities to observe their environment, and cooperate with other enti-
ties if necessary to accomplish their goals. Task migration between software agents
intends to improve the system throughput in a distributed system in which the
loads incurred by tasks vary over time [32]. A task reassignment can be achieved
by iterative local task swappings, where a task swapping involves task migrations
between a pair of agents as a method of local task reassignment [7]. A subclass
of task assignment (or reassignment) problems involves an equal number of tasks
and agents, finding a bijective task assignment between tasks and agents in such
a way that the total task assignment (or reassignment) benefit is maximized [57].
Those bijective task assignment problems and their variants appear in a wide va-
riety of areas in computer science and mathematics [5, 6, 56, 57]. Given n tasks
and n agents whose connections are described by a (connected) network topology,
task swapping cost between two agents often relies on a distance in the network
topology; the larger the distance between two agents in the network topology, the
larger communication delays of migrating tasks caused by the network. Therefore,
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we need to consider how task swappings are performed on a given network topol-
ogy for task reassignments. In this type of problems a group theory can be used to
represent task reassignments including iterative task swappings. A group-theoretic
approach to representing task assignments or reassignments have already been re-
searched [33, 47]. However, a group-theoretic approach to representing local task
swappings between agents in a distributed network has little been researched. We
propose a group-theoretic model of global task reassignments involving n tasks
and n agents by using local task swappings in a distributed network of several
well-known topologies.

This paper is organized as follows. Section 2 presents the problem formulation
and its assumptions. We give the necessary definitions for the problem formulation
in this section. Section 3 gives an introduction to permutation groups and Cayley
graphs. We also discuss transposition graphs of several network topologies and their
relationship to permutation sortings in this section. We present task swapping
graphs and their examples in distributed systems in Section 4. Group-theoretic
properties of task swapping graphs and their examples are discussed in this section.
Section 5 summarizes the related work and implementation. Finally, we conclude
in Section 6.

2. Problem formulation and assumptions

We first consider the scheduling problem where a set T of n independent tasks has
to be assigned to a set A of m unrelated parallel agents [54] without preemption.
Each task is assigned to exactly one agent. Following the notation in [19], let pij be
the processing time of task i on agent j and P be the corresponding n×m matrix
for pij . For a given assignment α : T → A, let α(i) = j if task i is assigned to agent
j. To denote the sum of processing times for tasks that are assigned to a specific
agent j, the load δj on agent j for a given α and P is defined as follows:

δj(P, α)
def
=

∑
i∈T,α(i)=j

pij .

To denote the maximum load on an agent, the assignment cost or makespan for a
given α, and P is defined as follows:

Cost(P, α)
def
= max

j∈A
δj(P, α).

The objective is to find an assignment α such that its corresponding makespan is
minimum. This problem has extensively been studied in the past decades [19, 23,
37]. It is computationally intractable in nature [19], hence a variety of approxima-
tion approaches have been researched (e.g., see [19, 23, 37, 49]).

We now consider the case where |T | = |A| and α : T → A is bijective. Fur-
ther, agents are assumed to be represented as an agent graph. An agent graph
Ga = (Va, Ea) [13] is an undirected graph, where Va denotes a set of agents in
a distributed system and Ea denotes communication links between agents. Let
T = {t1, t2, . . . , tn} be a set of n tasks and A = {a1, a2, . . . , an} be a set of n agents
represented by an agent graph Ga = (Va, Ea). Now, each task is assigned to each
agent in Ga = (Va, Ea) bijectively as an initial task assignment by using a task
assignment algorithm. Suppose the load on each agent varies over time, implying
that an initial task assignment may not remain optimal or suboptimal. The load re-
balancing intends to find a task reassignment in order to decrease makespan [1], or
to achieve a target load balance level along with minimum task migration cost [7].
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Task migration1 between agents incurs a task migration cost [11] to transfer the
state of the running task (e.g., execution state, I/O state, etc) of one agent to
the other agent. This cost is not trivial, considering that only nearby agents (or
processors) in the network topology are often involved to perform a task migra-
tion [7, 27]. Moreover, if we restrict each task reassignment to be bijective between
tasks and agents, then iterative local task swappings can be used for a global task
reassignment. A swapping distance is defined as the distance between agents in an
agent graph Ga for a task swapping. For example, a task swapping of swapping
distance 1 is a task swapping between adjacent agents in Ga, and a task swapping
of swapping distance 2 is a task swapping between agents whose distance is 2 in Ga.
Now, the overall cost difference before task swapping and after task swapping for
computationally intensive tasks (rather than communicationally intensive tasks)
is roughly the cost of a target task assignment after task swapping subtracted by
the cost of a source task assignment before task swapping, and added by the task
swapping cost itself. In the remainder of this paper we assume the followings:

(1) Each task and agent are not necessarily homogeneous, and the load on each
agent may vary over time.

(2) An agent network described by Ga = (Va, Ea) is static without taking
mobility (e.g., dynamic join or leave by agents [58]) into account.

(3) A task swapping cost is uniform between adjacent agents in the agent net-
work.

(4) A task swapping cost is assumed to be proportional to the task swapping
distance.

(5) Each task is long-lived and computationally intensive.
(6) A global task reassignment is obtained by using iterative and sequential

local task swappings.
(7) A task startup cost and the message passing overhead for task migration

protocol are ignored.
(8) Every agent in Ga = (Va, Ea) is cooperative [51]. When performing a global

task reassignment procedure, agents in Ga = (Va, Ea) are controlled by a
coordinator agent in a synchronized manner (e.g., see [8, 24] for workflow-
based agent coordination).

It follows that the expected total cost of task migrations hinges on how many
local task swappings are needed from a source task assignment to a target task
assignment. A decision making by the coordinator agent(s) whether or not a task
reassignment is performed is based on the information regarding the total cost
of task migrations along with the cost difference involving a source and target
task assignment. Let g1 be a bijective source task assignment between a set of n
tasks T = {t1, t2, . . . , tn} and a set of n agents A = {a1, a2, . . . , an} before task
migrations. Let g2 be a feasible target task assignment between T and A after task
migrations, which implies that g2 can be obtained by using iterative local task
swappings. Let h1 be the cost of task assignment g1 and let h2 be the cost of task
assignment g2. Let f(g1, g2, s1, s2, . . . , sk) be the total cost of task migrations, where
si for 1 ≤ i ≤ k < n is the number of local task swappings of swapping distance
i involved in converting g1 to g2. Then, a task reassignment benefit b(h1, h2, f) is
defined as −(h2−h1 +f(g1, g2, s1, s2, . . . , sk)), i.e., h1−h2−f(g1, g2, s1, s2, . . . , sk).
The higher value of b(h1, h2, f) implies that a task reassignment is more desirable,
while the negative value of b(h1, h2, f) implies that a task reassignment from g1 to
g2 is not desirable at all. If we restrict a local task swapping to be a task swapping

1In this paper we use task migration and process migration interchangeably.
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between adjacent agents in Ga = (Va, Ea), f(g1, g2, s1, s2, . . . , sk) is simply cs1,
where c is constant. If we restrict a local task swapping to be a task swapping
between agents in Ga = (Va, Ea) within distance m, f(g1, g2, s1, s2, . . . , sk) is cs1 +
2cs2 + · · · + mcsm, where c is constant and sr (1 ≤ r ≤ m) is the number of task
swappings of swapping distance r involved in converting g1 to g2. The problem is
formulated as follows:

Given a source task assignment g1 and a feasible target task assignment g2 on
the agent network described by an agent graph Ga = (Va, Ea), find the minimum
total cost of task migrations f(g1, g2, s1, s2, . . . , sk) to reach from g1 to g2.

In this paper we only concern local task swappings of swapping distance 1, which
are adjacent task swappings between agents in Ga = (Va, Ea). Since we assume
that a task swapping cost is uniform between adjacent agents in Ga = (Va, Ea), the
problem is reduced to find the minimum number of adjacent task swappings needed
from a source task assignment to reach a target task assignment in Ga = (Va, Ea).

3. Transposition and Cayley graphs

We first give a brief introduction to finite groups found in [18, 26, 28, 33].
A group (G, · ) is a nonempty set G, closed under a binary operation · : G×G→

G, such that the following axioms are satisfied: (i) (a·b)·c = a·(b·c) for all a, b, c ∈ G;
(ii) there is an element e ∈ G such that for all x ∈ G, e · x = x · e = x; (iii) for
each element a ∈ G, there is an element a−1 ∈ G such that a · a−1 = a−1 · a = e. If
H is a nonempty subset of G and is also a group under the binary operation · in
G, then H is called a subgroup of G.

The group of all bijections In → In, where In = {1, 2, . . . , n}, is called the sym-
metric group on n letters and denoted Sn. Since Sn is the group of all permutations
of In = {1, 2, . . . , n}, it has order n!. A permutation group is a subgroup of some
Sn.

Let i1, i2, . . . , in be distinct elements of In = {1, 2, . . . , n}. Then,(
1 2 · · · n
i1 i2 · · · in

)
def
= i1 i2 · · · in∈ Sn denotes the permutation that maps 1 7→ i1, 2 7→

i2, . . . , n 7→ in.
Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In = {1, 2, . . . , n}. Then

(i1 i2 · · · ir) is defined as the permutation that maps i1 7→ i2, i2 7→ i3,. . . , ir−1 7→ ir
and ir 7→ i1, and every other element of In maps onto itself. Then, (i1 i2 · · · ir) is
called a cycle of length r or an r-cycle; a 2-cycle is called a transposition.

Let G be a group and let si ∈ G for i ∈ I. The subgroup generated by S = {si :
i ∈ I} is the smallest subgroup of G containing the set S. If this subgroup is all of
G, then S is called a generating set of G.

A right action of a group G on a set X is a function X × G → X (usually
denoted by (x, g) 7→ xg) such that for all x ∈ X and g1, g2 ∈ G: (i) xe = x; (ii)
x(g1g2) = (xg1)g2. When such an action is given, we say that G acts (right) on the
set X. The set X is called a (right) G-set. If X is G as a set, we say that G acts
on itself.

Theorem 3.1 [28] Every non-identity permutation in Sn can be expressed as a
product of disjoint cycles of length at least 2. Further, Sn can be expressed as a
product of (not necessarily disjoint) transpositions.

For example, p = 2 1 6 3 4 5 ∈ S6 is written as (1 2)(3 6 5 4) as a product of disjoint
cycles or (1 2)(3 4)(3 5)(3 6) as a product of transpositions.

Let G be a finite group and S be a generating set of G. Then, Cay(G,S) denotes
the Cayley graph [2, 26, 36] of G with the generating set S, where the set of
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vertices V of Cay(G,S) corresponds to the elements of G, and the set of edges E
of Cay(G,S) corresponds to the action of generators in such a way that E = {<
x, y >g: x, y ∈ G and g ∈ S such that y = x ·g}. In this paper we assume that G is
a finite permutation group and the elements of S are transpositions in Cay(G,S). It
follows that S is closed under inverses, and E is undirected. In other words, an edge
< x, y > of the resulting Cay(G,S) is viewed as both < x, y >g and < y, x >g.
If G is a finite group and S is a set of transpositions that generates G, then a
transposition graph T = (< n >,S) [36] is an undirected graph in which < n >
denotes a vertex set of cardinality n and each edge < i, j > denotes transposition
(i j). If a transposition graph is a tree, we call the resulting transposition graph as a
transposition tree. We next provide examples of the generating sets for permutation
groups including their transposition trees. Let S1 = {(i i + 1) : 1 ≤ i < n}, S2 =
{(2i − 1 2i) : 1 ≤ i ≤ n}, S3 = {(1 i) : 2 ≤ i ≤ n}, S4 = {(i j) : 1 ≤ i < j ≤
n}, S5 = {(i j) : 1 ≤ i ≤ k < j ≤ n}, and S6 = S1 ∪ {(1 n)}.

Figure 1. Examples of transposition graphs T = (< n >,S) [36].

Figure 1 shows different kinds of transposition graphs corresponding to the gen-
erating sets S1, S2, . . . , S6 for some n and k. In this paper a transposition graph
having n vertices are labeled from 1 to n without any duplication. The Cayley
graph generated by S1 is called the bubble-sort graph BSn [2, 36], by S2 is called
the hypercube graph HCn [26], by S3 is called the star graph STn [2, 26, 36], by
S4 is called the complete transposition graph CTn [36], by S5 is called the gener-
alized star graph GSTn,k [26], and by S6 is called the modified bubble sort graph
MBSn [36].

A path p from vertex v1 to vertex v2 in Cay(G,S) can be represented by a
sequence of generators g1, g2, . . . , gk, where gi ∈ S for 1 ≤ i ≤ k. By abuse of
notation, we let p = g1g2 . . . gk. Note that p is also a path from vertex v−1

2 v1 to
vertex I (i.e., v1p = v2 if and only if v−1

2 v1p = I for the identity permutation I in
G). Thus, to find a path from vertex v1 to vertex v2 is reduced to find a path from
vertex v−1

2 v1 to vertex I, which in turn is reduced to the problem of sorting v−1
2 v1

to I using the generating set S [2].
Note that transpositions denoted by a transposition tree of order n labeled from

1 to n generate Sn [2]. However, not every transposition graph having n (n ≥ 2)
vertices yields a Cayley graph of Sn. For example, Figure 1(b) shows a transposi-
tion graph having 6 vertices, but it yields a Cayley graph of a group isomorphic to
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C2 × C2 × C2 instead of S6, where C2 is the cyclic group of order 2.
A minimum generator sequence [31] for permutation p of a permutation group G

using the generating set S is a minimum-length sequence consisting of generators
in S whose composition is p. For example, permutation π = 4 2 3 1 ∈ S4 can be
expressed as π = (1 2)(2 3)(3 4)(2 3)(1 2) of length 5 or π = (1 4) of length 1 using
the generating set S′6 = {(i i + 1) : 1 ≤ i < 4} ∪ {(1 4)} in which π = (1 4)
is the minimum generator sequence of length 1. Further, if an element s in the
generating set S can be expressed as the product of elements in S other than s,
then the generating set is called redundant [36]. For example, S6 is redundant, since
(1n) can be expressed as (1 2)(2 3) · · · (n− 1 n) · · · (2 3)(1 2).

Recall that the diameter [14] of a connected graph is the length of the ”longest
shortest path” between two vertices of the graph. Thus, the diameter of Cay(G,S)
is an upper bound of distance d(σ, I) from an arbitrary vertex σ to vertex I in
Cay(G,S), where the computation of d(σ, I) is obtained by sorting permutation σ
to the identity permutation I in G by means of the minimum generator sequence
using the generating set S [26]. Thus, the diameter of Cay(G,S) is an upper bound
of the lengths of minimum generator sequences for permutations in G using the
generating set S [2].

Table 1. Properties of some known Cayley graphs [36].

Type Number of Vertices Degree Diameter

BSn n! n− 1 n(n− 1)/2

STn n! n− 1 b3(n− 1)/2c
CTn n! n(n− 1)/2 n− 1

GSTn,k n! k(n− k) n− 1 + max (bk/2c, b(n− k)/2c)
MBSn n! n Unknown

HCn 2n n n

Now, consider a puzzle on a transposition tree described as follows [2]. Given a
transposition tree T having n vertices labeled from 1 to n, place n markers, each of
which is labeled from 1 to n, at the vertices of T arbitrarily in such a way that each
vertex of T is paired with exactly one marker. Let P be such an arbitrary initial
position of markers. Each legal move of the puzzle is to interchange the markers
placed at the ends of an edge in T . The terminal position of markers, denoted Q, is
the position in which each marker is paired with each vertex of T having the same
label. The puzzle is to find a sequence of legal moves from a given initial position
P to the final position Q with the minimum number of legal moves. In this paper
we call this puzzle as a permutation puzzle.

Theorem 3.2 [2] Let T be a transposition tree having n vertices. Given an initial
position P for a permutation puzzle on T , the final position Q for the puzzle can
be reached by legal moves in the following number of steps

c(p)− n+

n∑
i=1

d(i, p(i)),

where p is the permutation for P as an assignment of markers to the vertices of T ,
c(p) is the number of cycles in p, and d(i, j) is the distance between vertex i and
vertex j in T .

Corollary 3.3 [26] Let Diam(Cay(G, S)) be the diameter of Cay(G, S) of a
transposition tree T having n vertices. Let P be an initial position and Q be the
final position for a permutation puzzle on T . Then,
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Diam(Cay(G, S)) ≤ max
p∈G
{c(p)− n+

n∑
i=1

d(i, p(i))},

where p is the permutation for P as an assignment of markers to the vertices of T ,
c(p) is the number of cycles in p, and d(i, j) is the distance between vertex i and
vertex j in T .

The Cay(G, S) of a transposition tree T can be viewed as the state diagram of a
permutation puzzle on T , where the vertices of Cay(G, S) is the possible positions
of markers on T and each edge of Cay(G, S) corresponds to a legal move of the
permutation puzzle on T . An upper bound of the minimum number of legal moves
to reach the final position Q for a given initial position P is indeed the diameter of
Cay(G, S) [2] of a transposition tree T . Moreover, the inequality in Corollary 3.3
can be replaced by the equality for the cases of bubble sort and star graphs [26].

We close this section by describing the main ideas behind Theorem 3.2 (an in-
terested reader may refer to [2] for further details). Consider a permutation puzzle
on a transposition tree T having n vertices. Let p be a permutation for position P
as an assignment of n markers to the n vertices of T . The marker i is said to be
homed if i = p(i). If there exists any unhomed marker in the assignment, either
one of two cases occurs. The first case is that there exists an edge of T involving
two unhomed markers x and y such that they need to move toward each other for
the final position Q. The second case is that there exists an edge of T involving one
unhomed marker x and one homed marker y such that x needs to move toward y
for the final position Q. In both cases, interchanging markers x and y reduces the
number of steps in Theorem 3.2. Finally, if there is no such case in the assignment
(i.e., all markers are homed), then the number is reduced to 0.

4. Task swapping networks

In Section 3 we discussed a permutation puzzle on a transposition tree T having
n vertices and its legal moves. We now consider a transposition tree as a network
topology in which each vertex of T corresponds to an agent and each marker to a
task. Further, consider a position of n markers placed at n vertices of T as a task
assignment involving n tasks and n agents. Each legal move of a permutation puzzle
then corresponds to an adjacent task swapping in the network topology. We apply
the idea of the permutation puzzle on a transposition tree to task assignments in
a task swapping network. We first define our task swapping graph.

A task swapping graph Γ having n vertices is a connected graph in which each
vertex represents an agent and each edge represents a direct communication be-
tween agents. The label next to each vertex denotes an agent ID in Γ. Now, n tasks
are assigned to n vertices of Γ as a task assignment in which the label of each vertex
in Γ denotes a task ID. We assume that each task and agent ID are distinct num-
bers from the set {1, 2, . . . , n}, where n is the number of vertices in Γ. Therefore,

each task assignment in Γ is represented by permutation p =

(
1 2 · · · n
t1 t2 · · · tn

)
∈ Sn,

where each element in the first row of p denotes an agent ID and each element in
the second row of p denotes a task ID. If it is clear from the context, we simply
denote p as a one-line notation t1 t2 · · · tn ∈ Sn. For example, task assignments
in the task swapping graphs in Figure 2(a) and Figure 3(a) are represented by
2 5 6 3 1 4 8 7 and 5 4 2 1 6 9 7 8 3, respectively. Let p ∈ Sn be a permutation repre-
senting a task assignment in Γ. Then, we denote this labeled task swapping graph
Γ as Γp. Now, we define a task swapping of swapping distance k in Γp. A task
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swapping of swapping distance k is the swapping of tasks between agents whose
distance is k in Γp. Recall that a right multiplication of permutation p by transpo-
sition (a b) exchanges the values in position a and position b of p. It follows that a
task swapping of swapping distance k in Γp is represented by a right multiplication
of p by transposition t = (i(v1) i(v2)) ∈ Sn, where the distance between vertex v1

and vertex v2 is k and i(v) denotes the agent ID for vertex v in Γp. Therefore, it
converts Γp into Γpt.

A task swapping network is simply a distributed network represented by a task
swapping graph Γ. In this paper a task swapping network is referred to as a task
swapping graph Γ unless otherwise stated. Based on the assumptions and the prob-
lem formulation in Section 2, the problem is now reduced and rephrased by using
a task swapping graph Γ:

Given a source task assignment t1 and a feasible target task assignment t2 in a
task swapping graph Γ, find a minimum-length sequence of adjacent task swappings
(i.e., task swappings of swapping distance 1) needed from Γt1 to reach Γt2 . If t1 = t2,
then nothing needs to be done. Similarly, a task swapping graph having one vertex
involves no task swapping, which returns the empty sequence. A task swapping
graph of two vertices involves only a single task swapping, which gives an immediate
solution. In the remainder of this paper we assume that t1 6= t2 and a task swapping
graph has at least three vertices unless otherwise stated.

Figure 2. Task swapping graphs of line topology.

We find the solution of the problem for task swapping graphs of several key
topologies. We first find the solution of the problem for a task swapping graph of
line topology.

Line topology [21, 22, 57, 58] is one of the simplest interconnection network
topologies, where each agent is connected to exactly two neighboring agents other
than the two end agents that are connected to only one neighboring agent (see
Figure 2). We assume that each agent in a task swapping graph of line topology is
labeled in ascending order from left to right as shown in Figure 2. A task swapping
graph of line topology having n agents with their task assignment represented by

permutation p ∈ Sn is denoted as Γ
L(n)
p . For example, a task swapping graph of

Figure 2(a) is denoted as Γ
L(8)
p1 and a task swapping graph of Figure 2(b) is denoted

as Γ
L(8)
p2 , respectively, where p1 = 2 5 6 3 1 4 8 7 ∈ S8 and p2 = 1 6 2 3 4 5 7 8 ∈

S8. Recall that a right multiplication of permutation p by transposition (i i + 1)
exchanges the values in position i and position i + 1 of p. Since only adjacent
task swappings are allowed, we use the generating set S1 = {(i i + 1) : 1 ≤ i <
n} to find a minimum-length sequence of adjacent task swappings needed from

Γ
L(n)
π1 for π1 ∈ Sn to reach Γ

L(n)
π2 for π2 ∈ Sn. For example, the number of the



International Journal of Computer Mathematics 9

minimum adjacent task swappings needed from Γ
L(8)
p1 in Figure 2(a) to reach Γ

L(8)
p2

in Figure 2(b) is the minimum length of a permutation factorization of p1
−1p2

using the generating set S′1 = {(i i+ 1) : 1 ≤ i < 8}. Observe that p1
−1p2 takes p1

to p2, i.e., p1(p1
−1p2) = (p1p1

−1)p2 = p2. Equivalently, it is viewed as taking p−1
2 p1

to the identity permutation I, i.e., p−1
2 p1(p1

−1p2) = I. Thus, a minimum-length
permutation factorization of p1

−1p2 using the generating set S′1 corresponds to a
shortest path from vertex p−1

2 p1 to vertex I in the bubble sort (Cayley) graph
BS8. Therefore, it is reduced to find a shortest path from p−1

2 p1 = 3 6 2 4 1 5 8 7 to
permutation I in the bubble sort graph BS8:

3 6 2 4 1 5 8 7
<2,3>−−−−→ 3 2 6 4 1 5 8 7

<3,4>−−−−→ 3 2 4 6 1 5 8 7
<4,5>−−−−→ 3 2 4 1 6 5 8 7

<5,6>−−−−→
3 2 4 1 5 6 8 7

<7,8>−−−−→ 3 2 4 1 5 6 7 8
<1,2>−−−−→ 2 3 4 1 5 6 7 8

<3,4>−−−−→ 2 3 1 4 5 6 7 8
<2,3>−−−−→

2 1 3 4 5 6 7 8
<1,2>−−−−→ 1 2 3 4 5 6 7 8, where the label of each arrow denotes an edge

in BS8. Therefore, p1
−1p2 = (p−1

2 p1)
−1

= (2 3)(3 4)(4 5)(5 6)(7 8)(1 2)(3 4)(2 3)(1 2).
It follows that the resulting minimum-length sequence of adjacent task swappings

needed from Γ
L(8)
p1 to reach Γ

L(8)
p2 is ((2 3), (3 4), (4 5), (5 6), (7 8), (1 2), (3 4), (2 3),

(1 2)). It is interpreted as a sequence of task swappings so that a task swapping
between agents in the first term (agent 2 and agent 3) is followed by a task swapping
between agents in the second term (agent 3 and agent 4), and so on, until arriving
at a task swapping between agents in the last term (agent 1 and agent 2) of the
sequence. We see that the length of the sequence is 9, implying that at least 9

adjacent task swappings are needed from Γ
L(8)
p1 to reach Γ

L(8)
p2 . Algorithm 1 describes

the procedure of converting Γ
L(n)
π1 into Γ

L(n)
π2 by using a minimum-length sequence

of adjacent task swappings. It is known from group theory that the minimum length
of permutation p ∈ Sn using the generating set S1 is the inversion number [20, 34]
of p, where the inversion number of p is defined as |{(i, j) : i < j, p(i) > p(j)}|. The
maximum inversion number of permutations of n elements is n(n − 1)/2, which
corresponds to permutation n n − 1 · · · 2 1 [20]. Now, the minimum number of

adjacent task swappings needed from Γ
L(n)
π1 for π1 ∈ Sn to reach Γ

L(n)
π2 for π2 ∈ Sn

is the inversion number of π1
−1π2 (or π2

−1π1). It follows that the least upper bound

of the minimum number of adjacent task swappings needed from Γ
L(n)
π1 to reach

Γ
L(n)
π2 is n(n − 1)/2, which is the maximum inversion number of permutations of
n elements. We also see that it coincides with the diameter of bubble sort Cayley
graph BSn.

Algorithm 1: A task reassignment by using adjacent task swappings in a task
swapping graph of line topology.

Input: A source and a target task assignment in a task swapping graph of line

topology Γ
L(n)
π1 and Γ

L(n)
π2 , respectively.

Output: A minimum-length sequence of adjacent task swappings needed from

Γ
L(n)
π1 to reach Γ

L(n)
π2 .

begin
Find a minimum-length permutation factorization of π−1

1 π2 using a
shortest path from vertex π−1

2 π1 to vertex I in the bubble-sort Cayley
graph BSn;
Obtain a minimum-length sequence of adjacent task swappings needed

from Γ
L(n)
π1 to reach Γ

L(n)
π2 by using the above permutation factorization of

π−1
1 π2;

end
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In Algorithm 11, we do not need to generate every bubble-sort Cayley graph BSn
to find a shortest path from vertex π−1

2 π1 to vertex I. If a right multiplication of
π−1

2 π1 by an adjacent transposition reduces an inversion number by 1, the vertex of
the resulting permutation comes closer to vertex I in terms of a distance in BSn in
which permutation I has the 0 inversion number [2, 20]. By swapping adjacent out-
of-order elements in the permutation using the bubble-sort algorithm, it reduces an
inversion number by 1. Therefore, we may apply a bubble-sort algorithm of O(n2)
complexity [34] to π−1

2 π1 in order to keep track of a shortest path from vertex
π−1

2 π1 to vertex I as shown by the example in this section. Note that a minimum-

length sequence of adjacent task swappings needed from Γ
L(n)
π1 to reach Γ

L(n)
π2 is not

necessarily unique. However, the length of a minimum-length sequence is unique,
which is the inversion number of permutation π−1

2 π1. It is also the distance from
vertex π−1

2 π1 to vertex I in BSn.

Figure 3. Task swapping graphs of star topology.

Proposition 4.1 An upper bound for the minimum number of adjacent task swap-

pings needed from Γ
L(n)
π1 for π1 ∈ Sn to reach Γ

L(n)
π2 for π2 ∈ Sn is n(n− 1)/2.

Proof It follows directly from the diameter of Cayley graph BSn [26, 36] and from
Algorithm 1 in which finding a minimum-length permutation factorization of π−1

1 π2

for π1, π2 ∈ Sn using the generating set S1 = {(i i + 1) : 1 ≤ i < n} is converted
to the context of finding a minimum-length sequence of adjacent task swappings

needed from Γ
L(n)
π1 to reach Γ

L(n)
π2 . �

We next discuss a task swapping graph of star topology. A star topology consists
of a supervisor agent and worker agents, where a supervisor agent communicates
directly to worker agents and each worker agent communicates indirectly to other
worker agent(s) [12, 58, 61]. We assume that a task swapping graph of star topology
having n (n ≥ 3) agents is labeled in such a way that a supervisor agent is labeled
1 and worker agents are labeled in ascending order (clockwise) starting from 2
to n. A task swapping graph of star topology having n agents with their task

assignment represented by permutation p ∈ Sn is denoted as Γ
S(n)
p . For example, a

task swapping graph of Figure 3(a) is denoted as Γ
S(9)
p1 and a task swapping graph

of Figure 3(b) is denoted as Γ
S(9)
p2 , respectively, where p1 = 5 4 2 1 6 9 7 8 3 ∈ S9

1An alternative method to find a minimum-length permutation factorization of permutation π ∈ Sn using
the generating set S1 = {(i i+ 1) : 1 ≤ i < n} is to apply numbers game [4, 15] of finite Coxeter group of
type An−1 [20, 53]. An interested reader may refer to [4, 15, 20, 53] for further details.
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and p2 = 7 8 9 2 4 5 1 6 3 ∈ S9. Let p ∈ Sn be a permutation representing a task

assignment in Γ
S(n)
p . We see that a right multiplication of permutation p by a star

transposition [29, 44] (1 i) for 2 ≤ i ≤ n exchanges the values in position 1 (a
supervisor agent’s position) of p and position i (a worker agent’s position) of p.
Therefore, to find a minimum-length sequence of adjacent task swappings needed

from Γ
S(n)
π1 for π1 ∈ Sn to reach Γ

S(n)
π2 for π2 ∈ Sn is equivalent to finding a

minimum-length permutation factorization of π−1
1 π2 using the generating set S3 =

{(1 i) : 2 ≤ i ≤ n}. Observe that every non-identity permutation is denoted as a
product of disjoint cycles, one of which includes element 1. Therefore, a non-identity
permutation π ∈ Sn is expressed as π = (1 q2 · · · qs)(p1

1 · · · p1
l1

) · · · (pm1 · · · pmlm) ∈ Sn

if s ≥ 2 [29]. If a cycle including element 1 is a cycle of length 1, then permutation
π ∈ Sn is expressed as π = (p1

1 · · · p1
l1

) · · · (pm1 · · · pmlm) ∈ Sn. It is easily verified
that (1 q2 · · · qs) in π for s ≥ 2 is factorized into (1 qs)(1 qs−1) · · · (1 q2) using the
generating set S3, whose length is s− 1. Similarly, if lk ≥ 2, then (pk1 · · · pklk) in π is

factorized into (1 pk1)(1 pklk)(1 pklk−1) · · · (1 pk1) of length lk + 1 using the generating
set S3 [29]. It turns out these factorizations are minimal in the sense that no other
way of factorizations can have smaller length when using the generating set S3 [29].
Therefore, the minimum length of the above π ∈ Sn using the generating set S3 is
n+m− k − 1, where k is the number of cycle(s) of length 1. For example, if π =
(1 2 3 4)(5 6 7) ∈ S8, then π is factorized into π = (1 4)(1 3)(1 2)(1 5)(1 7)(1 6)(1 5)
using the generating set S′3 = {(1 i) : 2 ≤ i ≤ 8}, whose length is 8 + 1− 1− 1 = 7.

Algorithm 2: A task reassignment by using adjacent task swappings in a task
swapping graph of star topology.

Input: A source and a target task assignment in a task swapping graph of

star topology Γ
S(n)
π1 and Γ

S(n)
π2 , respectively.

Output: A minimum-length sequence of adjacent task swappings needed from

Γ
S(n)
π1 to reach Γ

S(n)
π2 .

begin
Compute π−1

1 π2 and set it as π;
Denote π as a product of disjoint cycles such that
(1 q2 · · · qs)(p1

1 · · · p1
l1

) · · · (pm1 · · · pmlm) ∈ Sn if s ≥ 2. Denote π as

(p1
1 · · · p1

l1
) · · · (pm1 · · · pmlm) ∈ Sn otherwise;

if s ≥ 3 then
(1 q2 · · · qs) in π is factorized into (1 qs)(1 qs−1) · · · (1 q2);

end
for k ← 1 to m do

if lk ≥ 2 then
(pk1 · · · pklk) in π is factorized into (1 pk1)(1 pklk)(1 pklk−1) · · · (1 pk1);

end

end
Obtain a minimum-length sequence of adjacent task swappings needed

from Γ
S(n)
π1 to reach Γ

S(n)
π2 by using the above permutation factorization of

π−1
1 π2;

end

Algorithm 2 describes the procedure of converting Γ
S(n)
π1 into Γ

S(n)
π2 by using

a minimum-length sequence of adjacent task swappings. For example, we find a

minimum-length sequence of adjacent task swappings needed from Γ
S(9)
p1 to reach

Γ
S(9)
p2 in Figure 3, where p1 = 5 4 2 1 6 9 7 8 3 ∈ S9 and p2 = 7 8 9 2 4 5 1 6 3 ∈ S9. A
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simple computation shows that p−1
1 p2 = 7 8 6 3 2 1 4 5 9 = (1 7 4 3 6)(2 8 5) ∈ S9. By

applying Algorithm 2, we factorize p−1
1 p2 into a product of star transpositions, i.e.,

p−1
1 p2 = (1 6)(1 3)(1 4)(1 7)(1 2)(1 5)(1 8)(1 2). Now, a minimum-length sequence of

adjacent task swappings needed from Γ
S(9)
p1 to reach Γ

S(9)
p2 is ((1 6), (1 3), (1 4), (1 7),

(1 2), (1 5), (1 8), (1 2)) of length 8.

Observe that a sequence of adjacent task swappings needed from Γ
S(n)
π1 to reach

Γ
S(n)
π2 in Algorithm 2 corresponds to a path from vertex π−1

2 π1 to vertex I in a star
graph STn. Therefore, an upper bound of the minimum number of adjacent task

swappings needed from Γ
S(n)
π1 to reach Γ

S(n)
π2 in Algorithm 2 is the diameter of a

star graph STn, which is b3(n− 1)/2c [2, 36].

Proposition 4.2 An upper bound for the minimum number of adjacent task swap-

pings needed from Γ
S(n)
π1 for π1 ∈ Sn to reach Γ

S(n)
π2 for π2 ∈ Sn is b3(n− 1)/2c.

Proof It follows immediately from the diameter of Cayley graph STn [2, 36] and
from Algorithm 2 in which finding a minimum-length permutation factorization of
π−1

1 π2 for π1, π2 ∈ Sn using the generating set S3 = {(1 i) : 2 ≤ i ≤ n} is converted
to the context of finding a minimum-length sequence of adjacent task swappings

needed from Γ
S(n)
π1 to reach Γ

S(n)
π2 . �

Figure 4. Task swapping graphs of complete topology.

A task swapping graph of complete topology is a fully-connected task swapping
graph in which each agent has direct links with all other agents in the topology.
Although the complete topology provides redundancy in terms of communication
links between pairs of agents, the cost is often too high when setting up communi-
cation links between agents in the topology (i.e., n(n− 1)/2 total communication
links are required for n agents in the complete topology) [58, 61]. A task swapping
graph of complete topology having n agents with their task assignment represented

by permutation p ∈ Sn is denoted as Γ
C(n)
p . For example, a task swapping graph

of Figure 4(a) is denoted as Γ
C(6)
p1 and a task swapping graph of Figure 4(b) is

denoted as Γ
C(6)
p2 , respectively, where p1 = 1 3 4 2 6 5 ∈ S6 and p2 = 1 5 6 3 2 4 ∈ S6.

Since each agent has direct links with all other agents in the complete topology, an
adjacent task swapping may occur between any pair of agents in the topology. Now,

to find a minimum-length sequence of adjacent task swappings needed from Γ
C(n)
π1

to reach Γ
C(n)
π2 is reduced to find a minimum-length permutation factorization of

π−1
1 π2 using the generating set S4 = {(i j) : 1 ≤ i < j ≤ n}. Verify that each cycle

(q1 q2 · · · ql) of length l > 2 can be factorized into a product of l− 1 transpositions
(q1 ql)(q1 ql−1) · · · (q1 q2). It is known from group theory that a cycle of length l > 2
cannot be written as a product of fewer than l− 1 transpositions in the generating
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set S4 [40, 42]. Thus, a minimum-length permutation factorization of π−1
1 π2 is ob-

tained by first denoting it as a product of disjoint cycles, then factorizing all the
cycle(s) of length greater than 2 using the generating set S4 as described.

Algorithm 3: A task reassignment by using adjacent task swappings in a task
swapping graph of complete topology.

Input: A source and a target task assignment in a task swapping graph of

complete topology Γ
C(n)
π1 and Γ

C(n)
π2 , respectively.

Output: A minimum-length sequence of adjacent task swappings needed from

Γ
C(n)
π1 to reach Γ

C(n)
π2 .

begin
Compute π−1

1 π2 and set it as π;
Denote π as a product of disjoint cycles such that
(q1

1 · · · q1
l1

)(q2
1 · · · q2

l2
) · · · (qm1 · · · qmlm) ∈ Sn;

for k ← 1 to m do
if lk ≥ 3 then

(qk1 q
k
2 · · · qkl ) in π is factorized into (qk1 q

k
l ) · · · (qk1 qk2 );

end

end
Obtain a minimum-length sequence of adjacent task swappings needed

from Γ
C(n)
π1 to reach Γ

C(n)
π2 by using the above permutation factorization of

π−1
1 π2;

end

Algorithm 3 describes the procedure of converting Γ
C(n)
π1 into Γ

C(n)
π2 by using a

minimum-length sequence of adjacent task swappings. We see that a minimum
length of permutation π ∈ Sn using the generating set S4 is n−r, where π consists
of r disjoint cycles.

Now, we find a minimum-length sequence of adjacent task swappings needed from

Γ
C(6)
p1 to reach Γ

C(6)
p2 in Figure 4, where p1 = 1 3 4 2 6 5 ∈ S6 and p2 = 1 5 6 3 2 4 ∈

S6. A direct computation shows that p−1
1 p2 = 1 6 5 2 4 3 = (2 6 3 5 4) ∈ S6. Then,

we factorize p−1
1 p2 as a product of transpositions, i.e., p−1

1 p2 = (2 4)(2 5)(2 3)(2 6)
by applying Algorithm 3. Therefore, a minimum-length sequence of adjacent task

swappings needed from Γ
C(6)
p1 to reach Γ

C(6)
p2 is ((2 4), (2 5), (2 3), (2 6)) of length 4.

In Section 3 we discussed that a Cayley graph of Sn generated by S4 = {(i j) :
1 ≤ i < j ≤ n} is the complete transposition graph CTn. It follows that a sequence

of adjacent task swappings needed from Γ
C(n)
π1 to reach Γ

C(n)
π2 in Algorithm 3 cor-

responds to a path from vertex π−1
2 π1 to vertex I in the complete transposition

graph CTn. To find a shortest path from vertex π−1
2 π1 to vertex I in CTn [36],

one may apply a greedy algorithm to transpose and locate each element in the
permutation to its homed position iteratively from left to right until arriving at

I. For example, a shortest path from vertex p−1
2 p1 = (p−1

1 p2)
−1

= 1 4 6 5 3 2 ∈ S6

to vertex I in CT6 is as follows: 1 4 6 5 3 2
<2,4>−−−−→ 1 5 6 4 3 2

<2,5>−−−−→ 1 3 6 4 5 2
<2,3>−−−−→

1 6 3 4 5 2
<2,6>−−−−→ 1 2 3 4 5 6, where the label of each arrow denotes an edge in CT6.

Therefore, p1
−1p2 = (p−1

2 p1)
−1

= (2 4)(2 5)(2 3)(2 6), which coincides the above
permutation factorization of p1

−1p2 using the generating set S4.
It follows that an upper bound for the minimum number of adjacent task swap-

pings needed from Γ
C(n)
π1 to reach Γ

C(n)
π2 in Algorithm 3 is the diameter of a complete

transposition graph CTn, which is n− 1 [36].
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Proposition 4.3 An upper bound for the minimum number of adjacent task swap-

pings needed from Γ
C(n)
π1 for π1 ∈ Sn to reach Γ

C(n)
π2 for π2 ∈ Sn is n− 1.

Proof It follows directly from the diameter of Cayley graph CTn [26, 36] and from
Algorithm 3 in which finding a minimum-length permutation factorization of π−1

1 π2

for π1, π2 ∈ Sn using the generating set S4 = {(i j) : 1 ≤ i < j ≤ n} is converted
to the context of finding a minimum-length sequence of adjacent task swappings

needed from Γ
C(n)
π1 to reach Γ

C(n)
π2 . �

Figure 5. Task swapping graphs of complete bipartite topology.

Recall that a graph is bipartite if its vertex set admits a partition into two
classes in such a way that every edge has its ends in two different classes [3, 10]. A
complete bipartite graph [10] is a bipartite graph in which every two vertices from
two different classes are adjacent. A task swapping graph of complete bipartite
topology [60, 61] is a complete bipartite task swapping graph, where agents are
grouped in two layers or classes (the upper and lower) in such a way that agents
between different layers are fully-connected, while agents in the same layer are not
directly connected. The agents at the upper layer have a centralized control over
the agents at the lower layer in a distributed manner in this topology. We assume
that each agent in a task swapping graph of complete bipartite topology is labeled
in ascending order from the upper left to bottom right as shown in Figure 5. A
task swapping graph of complete bipartite topology having n agents with their task

assignment represented by permutation p ∈ Sn is denoted as Γ
B(n,k)
p , where k is

the number of agents at the upper layer in Γ
B(n,k)
p . We call k as bipartite index.

As with other task swapping graphs, we assume n ≥ 3 for Γ
B(n,k)
p . We also assume

1 ≤ k < n for Γ
B(n,k)
p . Note that Γ

B(n,k)
p is simply Γ

S(n)
p when bipartite index k

is 1. For example, the task swapping graph of Figure 5(a) is denoted as Γ
B(8,3)
p1

and the task swapping graph of Figure 5(b) is denoted as Γ
B(8,3)
p2 , respectively,

where p1 = 3 7 1 6 5 4 8 2 ∈ S8 and p2 = 2 4 7 8 6 1 3 5 ∈ S8. We see that a right
multiplication of permutation p1 ∈ S8 by transposition (1 4) represents an adjacent

task swapping between agent 1 and agent 4 in Γ
B(8,3)
p1 , while a right multiplication

of permutation p1 ∈ S8 by transposition (1 2) does not represent an adjacent task

swapping in Γ
B(8,3)
p1 . Therefore, the generating set S′5 = {(i j) : 1 ≤ i ≤ 3 < j ≤ 8} is

required for finding a minimum-length sequence of adjacent task swappings needed

from Γ
B(8,3)
p1 to reach Γ

B(8,3)
p2 .

We next find a minimum-length permutation factorization of π−1
1 π2 using the

generating set S5 = {(i j) : 1 ≤ i ≤ k < j ≤ n} by which we obtain a minimum-

length sequence of adjacent task swappings needed from Γ
B(n,k)
π1 for π1 ∈ Sn to

reach Γ
B(n,k)
π2 for π2 ∈ Sn. We consider several types of cycles to factorize π−1

1 π2

using the generating set S5 = {(i j) : 1 ≤ i ≤ k < j ≤ n}. Set π = π−1
1 π2

and represent it as a product of (commutative) disjoint cycles Cs for 1 ≤ s ≤ t
such that π = C1 · · ·CiCi+1 · · ·CeCe+1 · · ·Ct, where each element in each cycle of
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C1 · · ·Ci is less than or equal to (bipartite index) k, each element in each cycle
of Ci+1 · · ·Ce is greater than k, and each cycle of Ce+1 · · ·Ct has both element(s)
less than or equal to k and element(s) greater than k. We first consider the first
type of a cycle, referred to as an internal cycle [60], which is a cycle in C1 · · ·Ci
of π. Let Cx be an internal cycle such that Cx = (c1 c2 · · · cv), where 1 ≤ cu ≤ k
for 1 ≤ u ≤ v. Then, Cx is factorized into (c1 t)(cv t) · · · (c2 t)(c1 t) using the gen-
erating set S5 = {(i j) : 1 ≤ i ≤ k < j ≤ n}, where t is an arbitrary number
satisfying k < t ≤ n. We next consider the second type of a cycle, referred to
as an external cycle [60], which is a cycle in Ci+1 · · ·Ce of π. Let Cy be an ex-
ternal cycle, i.e., Cy = (c1 · · · cq−1 cq), where k < cp ≤ n for 1 ≤ p ≤ q. Then,
Cy = (c1 · · · cq−1 cq) is factorized into (u cq)(u cq−1) · · · (u c1)(u cq) using the gen-
erating set S5, where u is an arbitrary number satisfying 1 ≤ u ≤ k. Now, we
consider the final type of a cycle, referred to as a mixed cycle [60], which is a
cycle in Ce+1 · · ·Ct of π. Each mixed cycle Cm for e + 1 ≤ m ≤ t is written as
(Em1

Em2
· · ·Ems

), where each Emi
for 1 ≤ i ≤ s can be denoted as a concate-

nation of two blocks of numbers [60]. Each number of the first block of Emi
for

1 ≤ i ≤ s is less than or equal to k, while each number of the second block of
Emi

for 1 ≤ i ≤ s is greater than k. We call Emi
as a simple cycle. For example,

a mixed cycle C ′m = (1 3 4 5 7 2 6 8) ∈ S8 for k = 3 is written as (E′m1
E′m2

), where
E′m1

= 1 3 4 5 7 and E′m2
= 2 6 8. It follows that the first block of E′m1

is 1 3, while
the second block of E′m1

is 4 5 7. In general, let Emi
= i1 i2 · · · ia j1 j2 · · · jb, where

1 ≤ iu ≤ k for 1 ≤ u ≤ a and k < jv ≤ n for 1 ≤ v ≤ b. Observe that the
cycle (Emi

) is factorized into (i1 jb) · · · (i1 j2)(ia j1) · · · (i2 j1)(i1 j1) using the gen-
erating set S5. For example, (1 3 4 5 7) ∈ S8 is factorized into (1 7)(1 5)(3 4)(1 4)
using the generating set S′5 = {(i j) : 1 ≤ i ≤ 3 < j ≤ 8}. Further, observe
that a mixed cycle C ′m = (E′m1

E′m2
) is written as (1 2)(E′m1

)(E′m2
), where 1 in

(1 2) is the first element in E′m1
and 2 in (1 2) is the first element in E′m2

. Thus,
C ′m = (E′m1

E′m2
) = (1 2)(E′m1

)(E′m2
) = (1 2)(1 7)(1 5)(3 4)(1 4)(2 8)(2 6). However,

(1 2) in C ′m is not a transposition in S′5. Therefore, we use a transposition (1 7)
next to (1 2) and convert (1 2)(1 7) into (1 7)(2 7) in which transposition (1 7) and
transposition (2 7) are transpositions in S′5. In general Cm = (Em1

Em2
· · ·Ems

)
is recursively factorized into Cm = (v1 v2)(Em1

)(Em2
· · ·Ems

), where v1 is the
first element of Em1

and v2 is the first element of Em2
[60]. Let (w1w2) be the

first transposition of a factorization of Em1
using the generating set S5. Then,

we have v1 = w1. Now, we see that Em1
is factorized using transpositions in

the generating set S5 such that (v1 v2)(w1w2) with v1 = w1 is rearranged into
(v1w2)(v2w2). Therefore, Cm is recursively factorized using transpositions in the
generating set S5. Furthermore, it turns out that the above way of factorizing an
arbitrary permutation p ∈ Sn using the generating set S5 for a given 1 ≤ k < n
yields the length of p not greater than n − 1 + max (bk/2c, b(n− k)/2c) [60]. Al-

gorithm 4 describes the procedure of converting Γ
B(n,k)
π1 into Γ

B(n,k)
π2 by using a

minimum-length sequence of adjacent task swappings. Now, we obtain a minimum-
length sequence of adjacent task swappings needed from a task swapping graph

Γ
B(8,3)
p1 in Figure 5(a) to reach a task swapping graph Γ

B(8,3)
p2 in Figure 5(b),

where p1 = 3 7 1 6 5 4 8 2 ∈ S8 and p2 = 2 4 7 8 6 1 3 5 ∈ S8. We first compute
p−1

1 p2, which is 8 6 2 7 4 3 1 5 = (1 8 5 4 7)(3 2 6) ∈ S8. Then, we factorize p−1
1 p2

using the generating set S′5. Observe that p−1
1 p2 is the product of simple cycles

(E1)(E2), where E1 = 1 8 5 4 7 and E2 = 3 2 6. Then, (E1) = (1 7)(1 4)(1 5)(1 8)
and (E2) = (2 6)(3 6). Therefore, a minimum-length sequence of adjacent task

swapping needed from Γ
B(8,3)
p1 in Figure 5(a) to reach Γ

B(8,3)
p2 in Figure 5(b) is

((1 7), (1 4), (1 5), (1 8), (2 6), (3 6)) of length 6.
As discussed in Section 3, a Cayley graph of Sn generated by S5 = {(i j) : 1 ≤
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Algorithm 4: A task reassignment by using adjacent task swappings in a task
swapping graph of complete bipartite topology.

Input: A source and a target task assignment in a task swapping graph of

complete bipartite topology Γ
B(n,k)
π1 and Γ

B(n,k)
π2 , respectively.

Output: A minimum-length sequence of adjacent task swappings needed from

Γ
B(n,k)
π1 to reach Γ

B(n,k)
π2 .

begin
Compute π−1

1 π2 and set it as π;
Write π as a product of disjoint cycles Cm for 1 ≤ m ≤ t such that
π = C1 · · ·CiCi+1 · · ·CeCe+1 · · ·Ct, where each cycle of C1 · · ·Ci is an
internal cycle, each cycle of Ci+1 · · ·Ce is an external cycle, and each cycle
of Ce+1 · · ·Ct is a mixed cycle;
for m← 1 to t do

if Cm is an r-cycle for r ≥ 3 then
// see Alogorithm 5

BipartiteCycleFactorization (Cm, k);

end

end
Obtain a minimum-length sequence of adjacent task swappings needed

from Γ
B(n,k)
π1 to reach Γ

B(n,k)
π2 by using the above permutation factorization

of π−1
1 π2;

end

i ≤ k < j ≤ n} is the generalized star graph GSTn,k. Therefore, an upper bound of

the minimum number of adjacent task swappings needed from Γ
B(n,k)
π1 for π1 ∈ Sn

to reach Γ
B(n,k)
π2 for π2 ∈ Sn in Algorithm 4 is the diameter of a generalized star

graph GSTn,k, which is n− 1 + max (bk/2c, b(n− k)/2c) [60].

Proposition 4.4 An upper bound for the minimum number of adjacent task

swappings needed from Γ
B(n,k)
π1 for π1 ∈ Sn to reach Γ

B(n,k)
π2 for π2 ∈ Sn is

n− 1 + max (bk/2c, b(n− k)/2c).

Proof It follows directly from the diameter of Cayley graph GSTn,k [26, 60], a
bipartite cycle factorization algorithm given in [60], and Algorithm 4 and 5 in which
finding a minimum-length permutation factorization of π−1

1 π2 for π1, π2 ∈ Sn using
the generating set S5 = {(i j) : 1 ≤ i ≤ k < j ≤ n} is converted to the context of

finding a minimum-length sequence of adjacent task swappings needed from Γ
B(n,k)
π1

to reach Γ
B(n,k)
π2 . �

A task swapping graph of ring topology is a circular task swapping graph in
which each agent has direct links with exactly two other agents in the topology.
In case any direct link of two agents is removed, a ring topology is changed into a
line topology [58]. We assume that a task swapping graph of ring topology having
n agents for n ≥ 3 is labeled in such a way that n agents are labeled clockwise in
ascending order starting from 1 to n (see Figure 6). Now, we denote a task swapping
graph of ring topology having n agents with their task assignment represented by

permutation p ∈ Sn as Γ
R(n)
p . We call the corresponding permutation p ∈ Sn for

Γ
R(n)
p as a circular permutation [16] in which position i of a circular permutation

p ∈ Sn is referred to as vertex i for 1 ≤ i ≤ n in Γ
R(n)
p . For example, a task

swapping graph of Figure 6(a) is denoted as Γ
R(8)
p1 and a task swapping graph of
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Algorithm 5: A bipartite cycle factorization using the generating set S5 =
{(i j) : 1 ≤ i ≤ k < j ≤ n} [60].

Input: An r-cycle Cm (3 ≤ r ≤ n) and bipartite index k (1 ≤ k < n).
Output: A factorization of Cm into a product of transpositions in S5.
begin

if Cm is an internal cycle then
Let Cm = (c1 c2 · · · cv). Then, Cm is factorized into
(c1 t)(cv t) · · · (c2 t)(c1 t), where t is any number in k < t ≤ n;

end
else if Cm is an external cycle then

Let Cm = (c1 · · · cq−1 cq). Then, Cm is factorized into
(u cq)(u cq−1) · · · (u c1)(u cq), where u is any number in 1 ≤ u ≤ k.

end
else // Cm is a mixed cycle

if Cm is a simple cycle then
Let Cm = (i1 i2 · · · ia j1 j2 · · · jb), where 1 ≤ iu ≤ k for 1 ≤ u ≤ a
and k < jv ≤ n for 1 ≤ v ≤ b. Then, Cm is factorized into
(i1 jb) · · · (i1 j2)(ia j1) · · · (i2 j1)(i1 j1);

end
else

Let Cm = (Em1
Em2
· · ·Emt

), where each (Emi
) for 1 ≤ i ≤ t is a

simple cycle. Then, Cm = (v1 v2)(Em1
)(Em2

· · ·Emt
), where v1 and

v2 are the first elements of Em1
and Em2

, respectively. Factorize a
simple cycle (Em1

) as indicated above. Let (w1w2) be the first
transposition of a factorization of Em1

. If v1 = w1, rearrange
(v1 v2)(w1w2) into (w1w2)(v2w2). Otherwise, rearrange
(v1 v2)(w1w2) into (w1w2)(v2w2)(v1w2)(v2w2). Then, Cm is
written as a product of transpositions in S5 followed by
(Em2

· · ·Emt
). We repeat this process recursively to (Em2

· · ·Emt
)

until we completely factorize Cm using S5.
end

end

end

Figure 6. Task swapping graphs of ring topology.

Figure 6(b) is denoted as Γ
R(8)
p2 , respectively, where p1 = 5 7 3 4 8 2 6 1 ∈ S8 and

p2 = 3 2 8 4 7 1 5 6 ∈ S8.
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Now, observe that a minimum-length sequence of adjacent task swappings needed

from Γ
R(n)
π1 to reach Γ

R(n)
π2 is obtained by finding a minimum-length permutation

factorization of π−1
1 π2 using the generating set S6 = {(i i+1) : 1 ≤ i < n}∪{(1n)}.

Note that adjacent task swappings in Γ
R(n)
p are adjacent task swappings in Γ

L(n)
p

along with an adjacent task swapping between agent 1 and agent n.
A displacement vector [16, 31] d = (d1, d2, d3, . . . , dn) of a circular permutation

p ∈ Sn is introduced to sort a circular permutation p into I using the generating set
S6 = {(i i+1) : 1 ≤ i < n}∪{(1n)} by which we obtain a permutation factorization
of p using the same generating set. Each component di in d is defined as di = j− i,
where p(j) = i for 1 ≤ i, j ≤ n. For any displacement vector d = (d1, d2, d3, . . . , dn),
we have

∑n
i=1 di = 0, and each di = 0 if d is a displacement vector of the identity

permutation of Sn. For example, a displacement vector of a circular permutation
5 7 3 4 8 2 6 1 ∈ S8 in Figure 6(a) is (7, 4, 0, 0,−4, 1,−5,−3). Intuitively, each |di|
in d is interpreted as the length of a path from position (vertex) i to position
(vertex) k on which element i is placed for a circular permutation p ∈ Sn, where
di is signed positive if the path from position i to position k is clockwise, and
signed negative if the path from position i to position k is counterclockwise. We
denote the corresponding path as path(di), which is uniquely determined by di of
its circular permutation p ∈ Sn. Let ds be the maximum-valued component of a
displacement vector d of a circular permutation p ∈ Sn, and dt be the minimum-
valued component of the displacement vector d. Since

∑n
i=1 di = 0, ds is greater

than 0 and dt is less than 0 for any non-identity circular permutation p ∈ Sn. If
ds − dt > n for each pair of indices s and t, then we renew ds as ds − n and dt as
dt + n, respectively. This process is called strictly contracting transformation [16].
If a displacment vector d admits no strictly contracting transformation, we say
that a displacement vector d is stable, denoted d̄. For example, the maximum and
minimum component values of displacement vector d′ = (7, 4, 0, 0,−4, 1,−5,−3) of
the circular permutation 5 7 3 4 8 2 6 1 ∈ S8 in Figure 6(a) are d′1 = 7 and d′7 = −5,
respectively. Since d′1 − d′7 = 12 > 8, we renew d′1 as d′1 = 7 − 8 = −1, and
d′7 = −5 + 8 = 3. This procedure continues until we obtain a stable displacement
vector d̄′, i.e., no pair of maximum-valued component d′s and the minimum-valued
component d′t of d′ satisfies d′s − d′t > 8. We leave it for the reader to verify that
d̄′ = (−1, 4, 0, 0,−4, 1, 3,−3).

The value
∑n

i=1 |di| of a stable displacement vector d̄ of a circular permutation
p ∈ Sn is a key indicator of how close a circular permutation p ∈ Sn is to the
identity permutation in terms of a length using the generating set S6. Note that∑n

i=1 |di| is not zero for any non-identity permutation in Sn, while
∑n

i=1 |di| is 0
for the identity permutation. By using a stable displacement vector d̄, an inversion
number I(d̄) is defined as I(d̄) = |{(i, j) : (i+ d̄i > j+ d̄j)∪(i+ d̄i+n < j+ d̄j), 1 ≤
i < j ≤ n}|, which is the minimum length of a permutation factorization of p ∈ Sn

using the generating set S6 = {(i i + 1) : 1 ≤ i < n} ∪ {(1n)} [31]. Now, at
each step of sorting a circular permutation p ∈ Sn into I, we find an adjacent
swapping to reduce an inversion number by 1. Observe that if an adjacent pair of
positions (vertices) v1 and v2 have elements s and t, respectively, such that path(s)
and path(t) are directed oppositely having an intersection of edge (v1, v2), then
swapping elements s and t on vertices v1 and v2 reduces an inversion number by 1.
Observe also the case where an adjacent pair of vertices v1 and v2 have elements
s and t, respectively, such that s is homed (i.e., p(s) = s) and t is not homed.
If path(t) crosses vertex v1, then swapping elements s and t on vertices v1 and
v2 reduces an inversion number by 1. Now, each step of the sorting procedure is
to find an adjacent swapping that reduces an inversion number by 1. As stated
earlier in this section, if d̄ is a stable displacement vector of a circular permutation
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p ∈ Sn, then the inversion number I(d̄) is the minimum length of a permutation
factorization of p using the generating set S6. Therefore, I(d̄) is the minimum
number of adjacent swappings required for sorting a circular permutation p ∈ Sn

to the identity permutation I using the generating set S6.

Algorithm 6: A task reassignment by using adjacent task swappings in a task
swapping graph of ring topology.

Input: A source and a target task assignment in a task swapping graph of

ring topology Γ
R(n)
π1 and Γ

R(n)
π2 , respectively.

Output: A minimum-length sequence of adjacent task swappings needed from

Γ
R(n)
π1 to reach Γ

R(n)
π2 .

// Find a minimum-length permutation factorization of π−1
1 π2 by

sorting π−1
2 π1 to the identity permutation I using the generating

set S6 = {(i i+ 1) : 1 ≤ i < n} ∪ {(1n)}
begin

Let π = π−1
2 π1 ∈ Sn. Find a stable displacement vector d̄ of π, and

calculate the inversion number I(d̄);
while π 6= I do

In a circular permutation π ∈ Sn in Γ
R(n)
π , find an adjacent pair of

vertices v1 and v2 having elements s and t, respectively, such that
path(s) and path(t) derived from its stable displacement vector of π
are directed oppositely having an intersection of edge (v1, v2). If no
such an adjacent pair exists, then find an adjacent pair of vertices v1

and v2 having elements s and t, respectively, such that s is homed (i.e.,
π(s) = s) and t is not homed in which path(t) crosses vertex v1;
Swap elements s and t on vertices v1 and v2, replacing π with the
resulting permutation. Compute a stable displacement vector of the
(updated) circular permutation π;

end
Obtain a minimum-length sequence of adjacent task swappings needed

from Γ
R(n)
π1 to reach Γ

R(n)
π2 by using the above permutation factorization of

π−1
1 π2;

end

Algorithm 6 describes the procedure of converting Γ
R(n)
π1 into Γ

R(n)
π2 by using

a minimum-length sequence of adjacent task swappings. By using Algorithm 6,
we obtain a minimum-length sequence of adjacent task swappings needed from a

task swapping graph Γ
R(8)
p1 in Figure 6(a) to reach a task swapping graph Γ

R(8)
p2 in

Figure 6(b), where p1 = 5 7 3 4 8 2 6 1 ∈ S8 and p2 = 3 2 8 4 7 1 5 6 ∈ S8. A direct
computation shows that p−1

2 p1 is 7 5 1 4 3 2 8 6 and its stable displacement vector
is (2,−4, 2, 0,−3, 2, 2,−1). An adjacent swapping between 7th position (element
8) and 8th position (element 6) of p−1

2 p1 reduces an inversion number by 1. This
sorting procedure is continued by using Algorithm 6 until arriving at the identity
permutation (see below):

7 5 1 4 3 2 8 6
<7,8>−−−−→ 7 5 1 4 3 2 6 8

<2,3>−−−−→ 7 1 5 4 3 2 6 8
<6,7>−−−−→ 7 1 5 4 3 6 2 8

<3,4>−−−−→
7 1 4 5 3 6 2 8

<4,5>−−−−→ 7 1 4 3 5 6 2 8
<7,8>−−−−→ 7 1 4 3 5 6 8 2

<1,8>−−−−→ 2 1 4 3 5 6 8 7
<1,2>−−−−→

1 2 4 3 5 6 8 7
<7,8>−−−−→ 1 2 4 3 5 6 7 8

<3,4>−−−−→ 1 2 3 4 5 6 7 8.
Now, we have the resulting minimum-length sequence of adjacent task swappings

needed from Γ
R(8)
p1 to reach Γ

R(8)
p2 , which is ((7 8), (2 3), (6 7), (3 4), (4 5), (7 8), (1 8),

(1 2), (7 8), (3 4)) of length 10.
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Note that an upper bound of the number of adjacent task swappings needed

from Γ
R(n)
π1 to reach Γ

R(n)
π2 is subject to the diameter of the modified bubble-sort

graph MBSn discussed in Section 3. To the best of our knowledge, the formula of
the diameter of MBSn is not known [16, 36, 50]. Nevertheless, a minimum-length
sequence of sorting an aribtrary circular permutation p ∈ Sn into the identity
permutation I using the generating set S6 = {(i i + 1) : 1 ≤ i < n} ∪ {(1n)} in
Algorithm 6 is obtained in polynomial time [31]. It follows that Algorithm 6 runs in
polynomial time as with other algorithms involving permutation sortings discussed
in this paper.

Algorithm 7: A task reassignment by using adjacent task swappings in a task
swapping graph of an arbitrary tree topology.

Input: A source and a target task assignment in a task swapping graph of an

arbitrary tree topology Γ
T (n)
π1 and Γ

T (n)
π2 , respectively.

Output: A sequence of adjacent task swappings needed from Γ
T (n)
π1 to reach

Γ
T (n)
π2 in the number c(π)− n+

∑n
i=1 d(i, π(i)) of steps, where

π = π−1
2 π1, c(π) is the number of cycles in π, and d(i, j) is the

distance between agent i and agent j in Γ
T (n)
π .

begin

Let π = π−1
2 π1 and start the procedure of sorting Γ

T (n)
π to Γ

T (n)
I ;

while π 6= I do

In Γ
T (n)
π find an adjacent pair of agents a1 and a2 such that their

unhomed tasks t1 and t2, respectively, need to move toward each other
for their homed positions (i.e., π(tk) = tk for k = 1 and k = 2). Or find
an adjacent pair of agents a1 and a2 such that its task t1 is homed and
its task t2 is not homed, respectively, in which task t2 needs to move
toward and cross agent a1 for its homed position (i.e., π(t2) = t2).
Then, swap task t1 on agent a1 and task t2 on agent a2, replacing π
with the resulting permutation;

end

Obtain a sequence of adjacent task swappings needed from Γ
T (n)
π1 to reach

Γ
T (n)
π2 by using the above sorting procedure;

end

Finally, we discuss a task swapping graph of an arbitrary tree topology that has
not been discussed in this section. A task swapping graph of a tree topology having
n agents with their task assignment represented by permutation p ∈ Sn is denoted

as Γ
T (n)
p . We concern the procedure of converting a source task assignment in Γ

T (n)
π1

to a target task assignment in Γ
T (n)
π2 by using the minimum number of adjacent

task swappings.
Due to Corollary 3.3, we may not always obtain a tight upper bound for the

number of steps to convert Γ
T (n)
π1 into Γ

T (n)
π2 for π1 ∈ Sn and π2 ∈ Sn. However,

we may apply Theorem 3.2 to convert Γ
T (n)
π1 into Γ

T (n)
π2 in the number c(π) − n +∑n

i=1 d(i, π(i)) of steps, where π = π−1
2 π1, c(π) is the number of cycles in π, and

d(i, j) is the distance between position (vertex) i and position (vertex) j in Γ
T (n)
π .

Algorithm 7 describes the procedure of converting Γ
T (n)
π1 into Γ

T (n)
π2 in the above

number of steps.

Proposition 4.5 An upper bound for the number of adjacent task swappings
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needed from Γ
T (n)
π1 for π1 ∈ Sn to reach Γ

T (n)
π2 for π2 ∈ Sn is c(π) − n +∑n

i=1 d(i, π(i)), where π = π−1
2 π1 and c(π) is the number of cycles in π.

Proof It follows directly from Theorem 3.2, Corollary 3.3, and Algorithm 7 in
which finding a sequence of legal moves of a permutation puzzle from the given
initial position corresponding to permutation π−1

2 π1 for π1, π2 ∈ Sn to the final
position corresponding to permutation I using the procedure discussed at the end
of Section 3 is converted to the context of finding a sequence of adjacent task

swappings needed from Γ
T (n)
π1 to reach Γ

T (n)
π2 . �

5. Related Work and Implementation

The linear assignment problem and its variants are one of the fundamental prob-
lems in both computer science and operations research [5, 6, 56, 57]. Task swap-
pings have already been researched in the context of problems involving assign-
ment [9, 39, 59], scheduling [35, 38], and planning [55]. However, little research
has been done for bijective task reassignments using iterative local (adjacent) task
swappings among agents in a network topology. From the known results of Cayley
graphs and permutation factorizations, we have applied them to our task swapping
networks of several well-known topologies. Cayley graph approaches to intercon-
nection networks have been researched in [2, 26, 36, 60], but no (bijective) task
assignment of tasks to agents is involved in them. Similarly, the group-theoretic
approaches for bijective task assignments have been discussed in [25, 33, 47], but
task swappings among agents in a network topology have not been considered. Al-
though minimum-generator sequence and cycle factorization problems have been
researched in [29, 31, 40, 44, 60], no task swapping or task assignment is considered
in them. Meanwhile, permutation puzzles on transposition trees have been briefly
discussed in [2]. However, transposition trees in [2] simply denote transpositions
along with generating sets for permutation groups, which do not intend to repre-
sent task assignments involving network topologies. By assigning IDs of n agents
from 1 to n in a predetermined manner corresponding to a given network topology,
task reassignments of n tasks using iterative local task swappings are represented
by purely algebraic forms in our approach.

We have developed an essential execution environment1 of our approach using
GNU C++ [17]. We first describe the correctness of algorithms discussed in this
paper. The correctness of Algorithm 1, 2, 3, 4 and 6 is described as follows. (Note
that Algorithm 5 have already been discussed in the existing literature (see [60]).)
Algorithm 1, 2, 3, 4 and 6 basically consist of three steps. The first step takes the in-
put, i.e., a source task assignment represented by permutation π1 and a target task
assignment represented by permutation π2 along with the type of network topology
to be considered. Then, they find the generating set corresponding to the type of
network topology and computes π = π−1

1 π2 (respectively, π = π−1
2 π1), and passes

them to the permutation factorization (respectively, permutation sorting) proce-
dure. The second step consists of a purely group-theoretic procedure, generating a
minimum generator sequence for permutation π using the permutation fatorization
(respectively, permutation sorting) procedure. The final step simply converts the
minimum generator sequence for permutation π into the minimum-length sequence
of adjacent task swappings needed from the source task assignment to reach the
target task assignment corresponding to the given network topology. The first and

1Source codes and sample data are available at http://www.airesearch.kr/downloads/tsg.zip
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third step is rather straightforward. Therefore, the correctness of them relies on the
second step involving permutation group theory, which is well-established in the
existing literature discussed in this paper. Similarly, the correctness of Algorithm 7
is a direct consequence of the algorithm discussed in the proof of Theorem 5 in [2].

Table 2. Sample output of TSG.

Topology Type: Line Topology

Number of Tasks: 8

Random Initial Assignments: No

Source Task Assignment: 5 7 3 4 8 2 6 1

Target Task Assignment: 3 2 8 4 7 1 5 6

Upper bound (diameter of bubble sort Cayley graph BSn for n = 8):

28 (i.e., n× (n− 1)/2 for n = 8).

Minimum number of adjacent task swappings needed from a source task

assignment to target task assignment: 14

Minimum length-sequence of adjacent task swappings:

((1 2),(2 3),(3 4),(4 5),(5 6),(7 8),(1 2),(2 3),(3 4),(4 5),(6 7),(2 3),(3 4),

(2 3))

Source Task Assignment: 5 7 3 4 8 2 6 1

1. After swapping 1 and 2 positions: 7 5 3 4 8 2 6 1

2. After swapping 2 and 3 positions: 7 3 5 4 8 2 6 1

3. After swapping 3 and 4 positions: 7 3 4 5 8 2 6 1

4. After swapping 4 and 5 positions: 7 3 4 8 5 2 6 1

5. After swapping 5 and 6 positions: 7 3 4 8 2 5 6 1

6. After swapping 7 and 8 positions: 7 3 4 8 2 5 1 6

7. After swapping 1 and 2 positions: 3 7 4 8 2 5 1 6

8. After swapping 2 and 3 positions: 3 4 7 8 2 5 1 6

9. After swapping 3 and 4 positions: 3 4 8 7 2 5 1 6

10. After swapping 4 and 5 positions: 3 4 8 2 7 5 1 6

11. After swapping 6 and 7 positions: 3 4 8 2 7 1 5 6

12. After swapping 2 and 3 positions: 3 8 4 2 7 1 5 6

13. After swapping 3 and 4 positions: 3 8 2 4 7 1 5 6

14. After swapping 2 and 3 positions: 3 2 8 4 7 1 5 6

Target Task Assignment: 3 2 8 4 7 1 5 6

Upper bound: 28

Reached the target task assignment successfully (14 steps).

We have tested Algorithm 1∼6 in this paper using our implementation up to
200 simulated tasks and agents. For a given input, the debugging mode of our
tool, called TSG, prints all the intermediate task assignments represented by per-
mutations from a given source task assignment to a task assignment, in order to
facilitate the verification of each task swapping step. Table 2 shows a sample out-
put of TSG. Note that the output in Table 2 is consistent with Proposition 4.1.
As briefly discussed in Section 4, Algorithm 1∼6 in this paper run in polynomial
time. Our implementation is generic, in the sense that tasks in task swapping net-
works can be interchangeable with tokens or objects. Our implementation shows
that it can further be employed for a subclass of object or token sorting problems
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using adjacent swappings in a given well-known network topology discussed in this
paper.

6. Conclusions

This paper presented task swapping networks of several basic topologies used in
distributed systems. Task swappings between adjacent agents in a network topology
are represented by task swappings of swapping distance 1 in the corresponding
task swapping graph. We considered the situation in which the total cost of task
migrations relies on the number of adjacent task swappings involved in a given
network topology. Minimum generator sequence algorithms using several known
generating sets for Sn allow us to find a minimum-length sequence of adjacent task
swappings needed from a source task assignment to reach a target task assignment
in a task swapping graph of several topologies, such as line, star, complete, complete
bipartite, and ring.

Task swapping graphs of the more complex topologies (e.g., 2D and 3D grids,
hypercubes, etc) along with task swappings of swapping distance k ≥ 2 have not
been discussed in this paper. It is a challenging research problem to find whether
or not there exists a polynomial-time algorithm for finding a minimum-length se-
quence of adjacent task swappings needed from a source task assignment to reach
a target task assignment in a task swapping graph of 2D (respectively, 3D) grid
topology. We leave it as an open problem.
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[55] J. Vokř́ınek, A. Komenda, and M. Pěchouček, Abstract Architecture for Task-oriented Multi-agent

Problem Solving, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 41 (2011), pp. 31–40.

[56] M.M. Zavlanos and G.J. Pappas, Distributed Formation Control with Permutation Symmetries, in
IEEE Conference on Decision and Control, 2007, pp. 2894–2899.

[57] M.M. Zavlanos, L. Spesivtsev, and G.J. Pappas, A distributed auction algorithm for the assignment
problem, in Proceedings of 47th IEEE Conference on Decision and Control, 2008, pp. 1212–1217.

[58] H.L. Zhang, C.H.C. Leung, and G.K. Raikundalia, Classification of Intelligent Agent Network Topolo-
gies and a New Topological Description Language for Agent Networks, in Intelligent Information



REFERENCES 25

Processing, 2006, pp. 21–31.
[59] X. Zheng and S. Koenig, K-swaps: cooperative negotiation for solving task-allocation problems, in

Proceedings of the 21st international jont conference on Artifical intelligence, 2009, pp. 373–378.
[60] H. Zhu and Z. Sun, New classes of interconnection topology structures and their properties, Wuhan

University Journal of Natural Sciences 1 (1996), pp. 371–385.
[61] Q. Zhu, Topologies of agents interactions in knowledge intensive multi-agent systems for networked

information services, Advanced Engineering Informatics 20 (2006), pp. 31–45.


